Penggunaan Metode Principal Component Analysis dalam Menentukan Faktor Dominan

نویسندگان

چکیده

Abstract. Principal Component Analysis is a statistical technique that has been widely used in terms of data processing. This study aims to extract interrelated variables. type research quantitative nature by taking the case fundraising Dompet Dhuafa, West Java. The variables this are ten types collection funds from 2016-2021 with 72 data. shows selection dominant factor can be principal component analysis method. results show there 10 (=Fidyah, =Zakat MPZ, Fitrah, =Kurban, =Bound Infak, =Thematic =Humanity, =Waqf, =Infak ,=Zakat ) which extracted into 5 Components based on eigen1 value , where first showing most factor. zakat loading 0.414 and variance percentage 19.39% 64.37%. Based fact Dhuafa 40%. So relative error same as real 0.035.
 Abstrak. adalah teknik statistik yang sudah digunakan secara luas dalam hal pengolahan Penelitian ini bertujuan untuk mengekstraksi variabel saling berhubungan. Jenis peneitian bersifat kuantitatif dengan mengambil kasus dana penghimpunan di Jawa Barat. Variabel penelitian ialah ke sepuluh jenis dari tahun sebanyak 72. Hal menunjukan bahwa pemilihan faktor dominan dapat metode analysis. Hasil ada diekstraksi menjadi berdasarkan nilai eigen≥1 dimana pertama paling karena memiliki keragaman total besar. sebesar 0,414 dan presentase varians 19,39% 64,37% . Berdasarkan kenyataan persentase 40 %. Sehingga galat relatif hasil sama 0.035.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Klasifikasi Data Cardiotocography Dengan Integrasi Metode Neural Network Dan Particle Swarm Optimization

Backpropagation (BP) adalah sebuah metode yang digunakan dalam training Neural Network (NN) untuk menentukan parameter bobot yang sesuai. Proses penentuan parameter bobot dengan menggunakan metode backpropagation sangat dipengaruhi oleh pemilihan nilai learning rate (LR)-nya. Penggunaan nilai learning rate yang kurang optimal berdampak pada waktu komputasi yang lama atau akurasi klasifikasi yan...

متن کامل

Principal Component Projection Without Principal Component Analysis

We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any black-box routine for ridge regression. By avoiding explicit principal component analysis (PCA), our algorithm is the first with no runtime dependen...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

Probabilistic Principal Component Analysis

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal Riset Matematika

سال: 2022

ISSN: ['2808-313X', '2798-6306']

DOI: https://doi.org/10.29313/jrm.v2i2.1192